Abstract
Several indoline derivatives with specific geometries are biologically active and have inhibitor properties. Many indolines are a key part of natural products. Much attention has been focused on the development of synthetic routes for their easy access. Current synthesis depends largely on metal catalysis, iodine reagents, and Oxone. To date, no synthetic route has been established that is metal‐free, reagent‐free, and environmentally friendly and provides a base for green chemistry. Here, we report the first facile metal‐free and reagent‐free synthesis of indoline derivatives, which could potentially be influential in the design of new biologically active compounds. The synthesis proceeds through intramolecular amination between a urea nucleophile and unactivated alkene. The ring closure occurs in a few hours in the presence of pre‐dried silica gel and gives good yields of indolines products, but in the absence of silica gel, the ring closure occurred overnight with stirring in dry solvent. An electron withdrawing group at the substituted aryl moiety of ureas increases the hydrogen bond donor ability of substrates that mediate the internal proton transfer at the terminal alkene and results in facile amination to give the indoline product with an “in plane” orientation of the carbonyl group and aromatic part of indoline framework. Such orientation in indolines is important for potent biological activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.