Abstract

After a strong earthquake, the possibility of the occurrence of either significant aftershocks or an even stronger mainshock is a continuing hazard that threatens the resumption of critical services and reoccupation of essential but partially damaged structures. A stochastic parametric model allows determination of probabilities for aftershocks and larger mainshocks during intervals following the mainshock. The probabilities depend strongly on the model parameters, which are estimated with Bayesian statistics from both the ongoing aftershock sequence and from a suite of historic California aftershock sequences. Probabilities for damaging aftershocks and greater mainshocks are typically well-constrained after the first day of the sequence, with accuracy increasing with time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.