Abstract

In this study, earth-abundant manganese oxide (MnO2) was used as a catalyst for the electrocatalytic glycerol oxidation with a satisfactory yield and high selectivity under mild pH media; that is, the high current density of 6.0 mA cm−2 and selectivity of ca. 46% for dihydroxyacetone (DHA). MnO2 also exhibited reasonable durability without considerable changes for 3 h. More importantly, by combination of operando Raman and electrochemical studies, a tentative reaction pathway was also proposed. It is found that high selectivity of formic acid at low potential was due to predominant coverage of α-MnO2 on catalyst surface. Meanwhile, at high applied potential, partial transformation of α-MnO2 to δ-MnO2 causes decreasing C-C bond cleavage, leading to high DHA selectivity. The results of this work not only demonstrate that MnO2 holds promise as an efficient electrocatalyst for selectively producing DHA but also provides realistic details on electrochemically generated species under working condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.