Abstract

Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here we demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low-frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure of merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.