Abstract

We consider discrete-time one-dimensional random dynamical systems with bounded noise, which generate an associated set-valued dynamical system. We provide necessary and sufficient conditions for a discontinuous bifurcation of a minimal invariant set of the set-valued dynamical system in terms of the derivatives of the so-called extremal maps. We propose an algorithm for reconstructing the derivatives of the extremal maps from a time series that is generated by iterations of the original random dynamical system. We demonstrate that the derivative reconstructed for different parameters can be used as an early-warning signal to detect an upcoming bifurcation, and apply the algorithm to the bifurcation analysis of the stochastic return map of the Koper model, which is a three-dimensional multiple time scale ordinary differential equation used as prototypical model for the formation of mixed-mode oscillation patterns. We apply our algorithm to data generated by this map to detect an upcoming transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.