Abstract
Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.
Highlights
The evolution of life on earth can be broadly characterized by a continuum of periods of biodiversification, turnover events, and times of crisis where extinction occurred on a large scale, allowing us to study biotic and abiotic ecosystem fluctuations throughout the Phanerozoic, the most severe of which were centered around the end-Permian mass extinction [1,2,3,4,5,6]
Our results show that marine bony fishes occupied a similar spectrum of body size during the Early Triassic and the Anisian (Fig. 1), ranging from a few centimeters to at least 1.5 meters (Table S1 in File S1)
Our results show that the prolonged step-wise recovery pattern of marine ecosystems following the end-Permian mass extinction as recently presented ([20]: Fig. 4) is incorrect and is in need of reconsideration as it does not reflect the global pattern
Summary
The evolution of life on earth can be broadly characterized by a continuum of periods of biodiversification, turnover events, and times of crisis where extinction occurred on a large scale, allowing us to study biotic and abiotic ecosystem fluctuations throughout the Phanerozoic, the most severe of which were centered around the end-Permian mass extinction [1,2,3,4,5,6]. Late Early Triassic), Panxian (Guizhou Province, middle Anisian, early Middle Triassic), Luoping (Yunnan Province, middle to late Anisian), Xingyi (Guizhou, late Ladinian, late Middle Triassic), and Guanling (Guizhou, early Carnian, early Late Triassic), yielding in many cases new taxa and well-preserved marine vertebrate fossils [11,12,13,14,15,16,17] Two of these biota were subsequently used to infer the timing of the marine biotic recovery from the end-Permian mass extinction, proposing that full recovery was not reached until either in the middle Anisian as shown by the Luoping biota [11,18,19], or even later in the Late Triassic with the Guanling biota [15,17]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.