Abstract
AimsMouse bone marrow mesenchymal stem cells (BMSCs) are pluripotent cells with self-renewal and differentiation abilities. Since the effects of senescent BMSCs on C2C12 cells are not fully clear, the present study aimed to elucidate these effects. Main methodsSenescence-associated β-galactosidase staining and western blotting were performed to confirm the senescence of BMSCs. Immunofluorescence and western blotting were used to assess myoblast differentiation in each group. The role of the AKT/P70 signaling pathway and forkhead box O3 (FOXO3) nuclear translocation was explored by western blotting. BMSC-derived exosomes were injected into the tibialis anterior of mice, and RT-qPCR was used to assess the role of exosomes in promoting muscle differentiation. Key findingsConditioned medium (CM) from early-senescent BMSCs promoted myogenic differentiation in vitro, which was detected as enhanced expression of myosin heavy chain (MHC), myogenin (MYOG), and myogenic differentiation 1 (MyoD). The AKT signaling pathway was found to be regulated by CM, which inhibited FOXO3 nuclear translocation. RT-qPCR analysis results showed that MHC, MyoD, and MYOG mRNA expression increased in the tibialis anterior of mice after exosome injection. SignificanceThe present study demonstrated that early-senescent BMSCs accelerated C2C12 cell myogenic differentiation, and the transcription factor, FOXO3, was the target of senescent cells. Collectively, our results suggest that the AKT/P70 signaling pathway mediates the effect of BMSCs on neighboring cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.