Abstract
AbstractThis paper presents an application of Bayesian networks where early recognition of traffic maneuver intention is achieved using features of lane change, representing the relative dynamics between vehicles on the same lane and the free space to neighbor vehicles back and front on the target lane. The classifiers have been deployed on the automotive target platform, which has severe constraints on time and space performance of the system. The test driving has been performed with encouraging results. Even earlier recognition is possible by considering the trend development of features, characterizing the dynamic driving process. The preliminary test results confirm feasibility.KeywordsEarly recognition of maneuver intentionDynamic bayesian networksSituation analysisBig data streams
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.