Abstract

ObjectivesIron regulation is an important modifier of renal ischemia–reperfusion injury, but the role of iron-binding proteins during cardiopulmonary bypass remains unclear. The goal was to characterize iron-binding proteins throughout ischemia–reperfusion injury to determine their association with acute kidney injury development. MethodsA prospective observational cohort of adult patients who underwent cardiac surgery (n = 301) was obtained, and acute kidney injury was defined by Kidney Disease Improving Global Outcomes. Serum ferritin, transferrin saturation, and urine hepcidin-25 were measured. ResultsIntraoperative serum ferritin was lower at the start of cardiopulmonary bypass (P = .005) and 1-hour cardiopulmonary bypass (P = .001) in patients with acute kidney injury versus patients without acute kidney injury. Lower serum ferritin and higher transferrin saturation at 1-hour cardiopulmonary bypass were independent predictors of acute kidney injury (serum ferritin odds ratio, 0.66; 95% confidence interval [CI], 0.48-0.91; transferrin saturation odds ratio, 1.26; 95% CI, 1.02-1.55) and improved model discrimination (area under the curve [AUC], 0.76; 95% CI, 0.67-0.85) compared with clinical prediction alone (AUC, 0.72; 95% CI, 0.62-0.81; ΔAUC and net reclassification index, P = .01). Lower ferritin, higher transferrin saturation at 1-hour cardiopulmonary bypass, and lower urine hepcidin-25 at postoperative day 1 were also independent predictors for acute kidney injury development, and this model demonstrated an AUC of 0.80 (0.72-0.87), which was superior to clinical prediction (ΔAUC P = .002, integrated discrimination improvement and net reclassification index P = .003). ConclusionsOur findings suggest that lower levels of intraoperative iron-binding proteins may reflect an impaired capacity to rapidly handle catalytic iron released during cardiopulmonary bypass, leading to kidney injury. These data highlight the importance of iron homeostasis in human ischemia–reperfusion injury and suggest it is a potentially modifiable risk during cardiac surgery. Intraoperative detection of incipient acute kidney injury may be feasible and could be used as an enrichment strategy for clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.