Abstract

A vibrocore from the sea floor of the southern North Sea provides a ~1,500-year record of early Holocene vegetation history and mire development in a landscape now 33 m below sea-level. Pollen, plant macrofossil and geochemical analyses of an AMS 14C dated sand–peat–marine mud sequence document the paludification on Pleistocene sands ~10,700 cal BP, the subsequent development of eutraphentic carr vegetation and the gradual inundation by the transgressing sea ~9,350 cal BP. Pinus–Corylus woodland prevailed on terrestrial grounds after hazel had immigrated ~10,700 cal BP. Salix dominated the carr vegetation throughout 1,300 years of peat formation, because Alnus did not spread in the Borkum Riffgrund area until 9,300 BP. Brackish reed vegetation with Phragmites established after inundation and siliciclastic marine sediments were being deposited. This article also examines the detection and suitability of key horizons indicative of marine influence. XRF-Scanning provides the most detailed results in the briefest possible time to pinpoint spectra best suitable for AMS 14C dating of classical key horizons such as start of peat formation and transgressive contact. The combined application of botanical and geochemical methods allows determining new key horizons indicative of marine influence, namely the earliest marine inundation and the onset of sea-level influence on coastal ground water level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.