Abstract
Handwritten signatures are generally considered a powerful biometric traits for personal verification. Recently, handwritten signatures have been also investigated for early diagnosis of neurodegenerative diseases. This paper presents a new approach for early diagnosis of neurodegenerative diseases by the analysis of handwritten dynamic signatures. For the purpose, the sigma-lognormal model was considered and dynamic parameters are extracted for signatures. Based on these parameters, the health condition of the signer is analysed in terms of Alzheimer disease. The approach is cheap and effective, therefore it can be considered as a very promising direction for further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.