Abstract
Breathing in mammals starts in the foetus and acquires a vital importance at birth. The ability to produce rhythmic motor behaviours linked to respiratory function is a property of the brainstem reticular formation, which has been remarkably conserved during the evolution of vertebrates. Therefore, to understand the biological basis of the breathing behavior, we are investigating conservative developmental mechanisms orchestrating the organogenesis of the brainstem. In vertebrates, the hindbrain is one of the vesicles that appears at the anterior end of the neural tube of the embryo. Further morphogenetic subdivision ensues whereby the hindbrain neuroepithelium becomes partitioned into an iterated series of compartments called rhombomeres. The segmentation process is believed to determine neuronal fates by encoding positional information along the rostro-caudal axis. Before and at the onset of segmentation, genes encoding transcription factors such as Hox, Krox-20, kreisler, are expressed in domains corresponding to the limits of future rhombomeres. Inactivation of these genes specifically disturbs the rhombomeric pattern of the hindbrain. The presentation will address the problem of whether this primordial rhombomeric organisation influences later function of respiratory control networks in chicks and mice. Experiments were performed in embryos and after birth in transgenic mice. They show that, although expression of developmental genes and hindbrain segmentation are transient events of early embryonic development, they are important for the process of respiratory rhythm generation by brainstem neuronal networks. We have found in chick that at the end of the period of segmentation, the hindbrain contains neuronal rhythm generators that conform to the rhombomeric anatomical pattern. We have also identified a minimal rhombomeric motif allowing the post-segmental maturation of a specific (GABAergic) rhythm-promoting circuit. Furthermore, in vivo and in vitro analysis of neurons in transgenic mice revealed postnatal respiratory phenotypes associated with defects of central pontine and/or afferent respiratory control in Krox-20, Hoxa1 and kreisler mutants. Neonatal respiratory phenotypes are also induced in mice by treatment with low doses of retinoic acid that slightly change the early embryonic development of the Pons. Altogether, these experiments indicate that segmentation-related specifications of the hindbrain rhythmic neuronal network influences the respiratory patterns after birth. Therefore, early developmental processes have to be taken into account to understand normal and pathological diversity of the breathing behaviour in vertebrates.
Highlights
To be effective, inspiratory muscles on the left and right sides must contract together
We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions
The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)
Summary
Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.