Abstract
The mechanisms by which early chronic low-level lead (Pb) exposure disrupts the developing brain are not yet understood. Rodent models have provided promising results however behavioral tests sensitive to effects at lowest levels of exposure during development are needed. Preadolescent animals (N=52) exposed to low and higher levels of Pb via lactation from birth to PND 28 completed the Object-in-Place Task of visual spatial and visual object memory retrieval (at PND 28). Generalized linear mixed models were used, controlling for sex and litter as a random effect. As compared with controls, global vertical exploratory behavior (rearing) markedly increased during memory retrieval. The findings suggested that early chronic Pb exposure altered the development of critical exploratory functions needed for learning and survival. Behaviors exhibited in novel spatial and novel object zone perimeters suggested that the Object-in-Place task is a valid measure of visual spatial and visual object memory in pre-adolescent C57BL/6J mice. Additional studies are needed to understand how early chronic low-level lead exposure disrupts the trajectory and possible linkages of critical exploratory and perceptual systems during development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.