Abstract

As the world ages, it becomes urgent to unravel the mechanisms underlying brain aging and find ways of intervening with them. While for decades cognitive aging has been related to localized brain changes, growing attention is now being paid to alterations in distributed brain networks. Functional connectivity magnetic resonance imaging (fcMRI) has become a particularly useful tool to explore large-scale brain networks; yet, the temporal course of connectivity lifetime changes has not been established. Here, an extensive cross-sectional sample (21–85 years old, N = 887) from a public fcMRI database was used to characterize adult lifespan connectivity dynamics within and between seven brain networks: the default mode, salience, dorsal attention, fronto-parietal control, auditory, visual and motor networks. The entire cohort was divided into young (21–40 years, mean ± SD: 25.5 ± 4.8, n = 543); middle-aged (41–60 years, 50.6 ± 5.4, n = 238); and old (61 years and above, 69.0 ± 6.3, n = 106) subgroups. Correlation matrices as well as a mixed model analysis of covariance indicated that within high-order cognitive networks a considerable connectivity decline is already evident by middle adulthood. In contrast, a motor network shows increased connectivity in middle adulthood and a subsequent decline. Additionally, alterations in inter-network interactions are noticeable primarily in the transition between young and middle adulthood. These results provide evidence that aging-related neural changes start early in adult life.

Highlights

  • Aging has long been suggested to be accompanied by cognitive decline, even in the absence of dementia or other neurological insults

  • In our study the DAN was positively correlated with these three non-cognitive networks

  • The present findings indicate that functional connectivity (FC) decline in high-order cognitive networks is already evident by middle-age, as expressed by fcMRI measures

Read more

Summary

Introduction

Aging has long been suggested to be accompanied by cognitive decline, even in the absence of dementia or other neurological insults. This decline is more pronounced in cognitive abilities such as processing speed, working memory, and encoding new information into episodic memory, whereas other capacities, semantic knowledge, and emotional processing, seem to remain relatively stable along the adult lifespan (Park et al, 2002; Buckner, 2004; Hedden and Gabrieli, 2004; Park and Payer, 2006; Salthouse, 2009). A few DTI studies reported a considerable FA decrement in the transition between early and middle adulthood, whereas no significant difference was observed between middleaged and older adults (Salat et al, 2005; Giorgio et al, 2010)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.