Abstract

In the classic paradigm of mammalian cell cycle control, Rb functions to restrict cells from entering S phase by sequestering E2F activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase1, 2. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examine the effects of E2f1, E2f2 and E2f3 triple deficiency in murine ES cells, embryos and small intestines. We show that in normal dividing progenitor cells E2F1-3 function as transcriptional activators, but contrary to current dogma, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells they function in complex with Rb as repressors to silence E2F targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2F1-3 from repressors to activators, leading to the superactivation of E2F responsive targets and ectopic cell divisions, and loss of E2f1-3 completely suppressed these phenotypes. This work contextualizes the activator versus repressor functions of E2F1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.