Abstract

Anisotropic exchange couplings, such as the Dzyaloshinskii-Moriya interaction (DMI), have played a vital role in the formation and dynamics of spin textures. This work predicts an anisotropic conduction electron spin density in metals with heavy magnetic impurities. The polarization of this $Dzyaloshinskii$-$Moriya$ $spin$ $density$ (DM-SD) is not collinear to the localized magnetic moments but rotated by the spin-dependent skew scattering of heavy atoms. The DM-SD induces the DMI between magnetic moments in metals and, therefore, it is the anisotropic extension of the Rutherman-Kittel-Kasuya-Yoshida spin density. Our model consists of two localized magnetic moments, one with a large spin-orbit coupling (a lanthanide or rare earth), in a free electron gas. The lanthanide spin controls the DM-SD strength and polarization, promising a flexible control mechanism for anisotropic couplings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.