Abstract
Vascular proliferative disorders, such as atherosclerosis and restenosis, are the most common causes of severe cardiovascular diseases, but a common molecular mechanism remains elusive. Here, we identify and characterize a novel hyperplasia suppressor gene, named HSG (later re-named rat mitofusin-2). HSG expression was markedly reduced in hyper-proliferative vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rat arteries, balloon-injured Wistar Kyoto rat arteries, or ApoE-knockout mouse atherosclerotic arteries. Overexpression of HSG overtly suppressed serum-evoked VSMC proliferation in culture, and blocked balloon injury induced neointimal VSMC proliferation and restenosis in rat carotid arteries. The HSG anti-proliferative effect was mediated by inhibition of ERK/MAPK signalling and subsequent cell-cycle arrest. Deletion of the p21(ras) signature motif, but not the mitochondrial targeting domain, abolished HSG-induced growth arrest, indicating that rHSG-induced anti-proliferation was independent of mitochondrial fusion. Thus, rHSG functions as a cell proliferation suppressor, whereas dysregulation of rHSG results in proliferative disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.