Abstract
In immature dogs after pneumonectomy (PNX), pulmonary viscous resistance is persistently elevated predominantly as a result of a high airway resistance (Raw). We examined the anatomical basis for this observation by using computerized tomography scans obtained from foxhounds 4-10 mo after right PNX. Airways of the left lower lobe were followed from generations z = 0 (trachea) to z = 12. By 4 mo post-PNX, airway length increased significantly relative to sham-operated dogs, but airway cross-sectional area (CSA) did not. By 10 mo post-PNX, average airway CSA was 24% above that in controls. Theoretically, the increased airway length and CSA should reduce lobar Raw by 50%. However, post-PNX airway dilatation did not normalize total CSA, and estimated resistance due to turbulence and convective acceleration increased threefold; i.e., the 50% reduction in lobar Raw would be offset by the loss of four of seven lobes. Thus the expected reduction in work of breathing in the whole animal is only ~30%, consistent with previously measured work of breathing in pneumonectomized dogs. We conclude that airway structure adapts slowly and incompletely, resulting in limited functional compensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.