Abstract

We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT for example), or it can come from the execution of a statically compiled native binary. This paper evaluates the Dynamo system in the latter, more challenging situation, in order to emphasize the limits, rather than the potential, of the system. Our experiments demonstrate that even statically optimized native binaries can be accelerated Dynamo, and often by a significant degree. For example, the average performance of --O optimized SpecInt95 benchmark binaries created by the HP product C compiler is improved to a level comparable to their --O4 optimized version running without Dynamo. Dynamo achieves this by focusing its efforts on optimization opportunities that tend to manifest only at runtime, and hence opportunities that might be difficult for a static compiler to exploit. Dynamo's operation is transparent in the sense that it does not depend on any user annotations or binary instrumentation, and does not require multiple runs, or any special compiler, operating system or hardware support. The Dynamo prototype presented here is a realistic implementation running on an HP PA-8000 workstation under the HPUX 10.20 operating system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.