Abstract

Severe vanadium pollution in deep soil through surface infiltration during mining activities has been particularly concerned, but little is known about vanadium migration dynamics in vertical soil profile. Indigenous microorganisms widely exist in soil, however, their functions and suffered impacts during vertical vanadium migration have rarely been investigated. In this study, 100 cm height columns were constructed with undisturbed soil around vanadium tailing reservoir were constructed to describe vertical vanadium transport process and corresponding interactions between vanadium and indigenous microorganisms. 91 d continuous leaching with pentavalent vanadium [V(V)] showed that V(V) gradually downward migrated. Soil microorganisms slowed down vertical V(V) migration rate by transferring V(V) to insoluble tetravalent vanadium. Enriched Gemmatimonadaceae and Actinobacteria were identified to contribute to microbial V(V) transformation. Co-existing nitrate weakened the soil’s ability to intercept V(V) via electron competition. Microbial communities were reshaped by vanadium during leaching, while enzyme activities increased slightly due to vanadium stimulation. This work advances the understanding of vertical vanadium migration characteristics in soil, which is essential to risk management and effective remediation of vanadium-polluted sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.