Abstract
We present measurements of the azimuthal rotation velocity $\dot{{\it\theta}}(t)$ and thermal amplitude ${\it\delta}(t)$ of the large-scale circulation in turbulent Rayleigh–Bénard convection with modulated rotation. Both $\dot{{\it\theta}}(t)$ and ${\it\delta}(t)$ exhibit clear oscillations at the modulation frequency ${\it\omega}$. Fluid acceleration driven by oscillating Coriolis force causes an increasing phase lag in $\dot{{\it\theta}}(t)$ when ${\it\omega}$ increases. The applied modulation produces oscillatory boundary layers and the resulting time-varying viscous drag modifies ${\it\delta}(t)$ periodically. Oscillation of $\dot{{\it\theta}}(t)$ with maximum amplitude occurs at a finite modulation frequency ${\it\omega}^{\ast }$. Such a resonance-like phenomenon is interpreted as a result of optimal coupling of ${\it\delta}(t)$ to the modulated rotation velocity. We show that an extended large-scale circulation model with a relaxation time for ${\it\delta}(t)$ in response to the modulated rotation provides predictions in close agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.