Abstract

Humoral immunity confers protection against COVID-19. The longevity of antibody responses after receiving an inactivated vaccine in individuals with previous SARS-CoV-2 infection is unclear. Plasma samples were collected from 58 individuals with previous SARS-CoV-2 infection and 25 healthy donors (HDs) who had been vaccinated with an inactivated vaccine. The neutralizing antibodies (NAbs) and S1 domain-specific antibodies against the SARS-CoV-2 wild-type and Omicron strains and nucleoside protein (NP)-specific antibodies were measured using a chemiluminescent immunoassay. Statistical analysis was performed using clinical variables and antibodies at different timepoints after SARS-CoV-2 vaccination. NAbs targeting the wild-type or Omicron strain were detected in individuals with previous SARS-CoV-2 infection at 12 months after infection (wild-type: 81%, geometric mean (GM): 20.3 AU/mL; Omicron: 44%, GM: 9.4 AU/mL), and vaccination provided further enhancement of these antibody levels (wild-type: 98%, GM: 53.3 AU/mL; Omicron: 75%, GM: 27.8 AU/mL, at 3 months after vaccination), which were significantly higher than those in HDs receiving a third dose of inactivated vaccine (wild-type: 85%, GM: 33.6 AU/mL; Omicron: 45%, GM: 11.5 AU/mL). The level of NAbs in individuals with previous infection plateaued 6 months after vaccination, but the NAb levels in HDs declined continuously. NAb levels in individuals with previous infection at 3 months post-vaccination were strongly correlated with those at 6 months post-vaccination, and weakly correlated with those before vaccination. NAb levels declined substantially in most individuals, and the rate of antibody decay was negatively correlated with the neutrophil-to-lymphocyte ratio in the blood at discharge. These results suggest that the inactivated vaccine induced robust and durable NAb responses in individuals with previous infection up to 9 months after vaccination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.