Abstract

A model of discrete dynamics of entanglement of bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied with an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of both subsystems. For some mixed states having different marginal entropies of both subsystems (one of them larger than the global entropy and the other one one smaller) we find an asymmetry in speed of entanglement decay. The entanglement of these states decreases faster, if the depolarizing channel acts on the "classical" subsystem, characterized by smaller marginal entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.