Abstract
An n+1-dimensional impulsive reaction-diffusion periodic predator-prey system with Holling type III functional response is investigated in the present paper. Sufficient conditions on the ultimate boundedness and permanence of the predator-prey system are established based on the comparison theory of differential equation and upper and lower solution method. By constructing appropriate auxiliary function, the conditions for the existence of a unique globally stable positive periodic solution are also obtained. Some numerical examples are presented to verify our results. A discussion is given in the end of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.