Abstract

We analyze the dynamics of a set of two-level atoms coupled to the electromagnetic environment within a waveguide. This problem is often tackled by assuming a weak coupling between the atoms and the environment as well as the associated Markov approximation. We show that the accuracy of such an approximation may be more limited than in the single-atom case and also be strongly determined by the presence of collective effects produced by atom-atom interactions. To this aim, we solve the full problem with exact diagonalization and also the time-dependent density matrix renormalization group method, and compare the result to that obtained within a weak-coupling master equation and with the Dicke approximation. Finally, we study the dynamics of the entanglement within the system when considering several inter-atomic distances and atomic frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.