Abstract

High moisture levels and low frequency of wildfires have contributed to the accumulation of the organic layer in open black spruce (Picea mariana)–Sphagnum dominated stands of eastern boreal North America. The anticipated increase in drought frequency with climate change could lead to moisture losses and a transfer of the stored carbon back into the atmosphere due to increased fire disturbance and decomposition. Here we studied the dynamics of soil moisture content and weather conditions in spruce–feather moss and spruce–Sphagnum dominated stands of the boreal Clay Belt of eastern Canada during particularly dry conditions. A linear mixed model was developed to predict the moisture content of the organic material according to weather, depth and site conditions. This model was then used to calculate potential depth of burn and applied to climate model projections to determine the sensitivity of depth of burn to future fire hazards. Our results suggest that depth of burn varies only slightly in response to changes in weather conditions in spruce–Sphagnum stands. The reverse holds true in spruce–feather moss stands. In conclusion, our results suggest that spruce–Sphagnum stands in the boreal Clay Belt may be resistant to an increase in the depth of burn risk under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.