Abstract

We report spectroelectrochemical and transient absorption spectroscopic studies of electron injection from the plant pigment betanin (Bt) to nanocrystalline TiO2. Spectroelectrochemical experiments and density functional theory (DFT) calculations are used to interpret transient absorption data in terms of excited state absorption of Bt and ground state absorption of oxidation intermediates and products. Comparison of the amplitudes of transient signals of Bt on TiO2 and on ZrO2, for which no electron injection takes place, reveals the signature of two-electron injection from electronically excited Bt to TiO2. Transient signals observed for Bt on TiO2 (in contrast to ZrO2) on the nanosecond time scale reveal the spectral signatures of photo-oxidation products of Bt absorbing in the red and the blue. These are assigned to a one-electron oxidation product formed by recombination of injected electrons with the two-electron oxidation product. We conclude that whereas electron injection is a simultaneous two-electron process, recombination is a one-electron process. The formation of a semiquinone radical through recombination limits the efficiency and long-term stability of the Bt-based dye-sensitized solar cell. Strategies are suggested for enhancing photocurrents of dye-sensitized solar cells by harnessing the two-electron oxidation of organic dye sensitizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.