Abstract

The evolutionary excitation dynamics of the gravitational instability in a self-gravitating viscoelastic non-thermal polytropic complex fluid is semi-analytically explored on the astro-scales of space and time. The polytropic equation of state is well validated for the hydrostatic equilibrium established by a perfect heating-cooling balancing in the uni-component complex fluid. We apply a generalized gravitating hydrodynamic model in the concurrent presence of buoyancy, thermal fluctuations, volumetric expansion, and so forth. A normal mode (local) analysis yields a quadratic linear dispersion relation with a unique set of multi-parametric coefficients. The analytical reliability is checked by comparing with the existing reports on purely ideal inviscid nebular fluids and non-ideal viscoelastic fluids in isolation. It is seen that, unlike the normal instability mechanisms, the instability here remains unaffected due to the thermo-mechanical diffusion processes. The stabilizing (destabilizing) and accelerating (decelerating) factors of the instability are illustratively explored. The instability features are judged in the light of both impure non-ideal viscoelastic fluid and pure ideal inviscid nebular fluid scenarios. The relevancy of our exploration in superdense compact viscoelastic astro-objects and their surrounding atmospheres is summarily outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.