Abstract

Flames near the rich-flammability limit of hydrogen-air mixtures are studied using a detailed, time-dependent, one-dimensional Lagrangian model. Results from the numerical simulations indicate that a steady burning velocity is not obtained for very rich hydrogen-air mixtures. As the amount of hydrogen is increased, a damped oscillation is observed in the flame and burning velocities, and then, with further increase in the amount of hydrogen, an undamped oscillation with a complex set of frequencies is observed. Simulations with a simplified one-step irreversible chemical reaction do not show these oscillations, suggesting that chemical kinetics plays a strong role in inducing these oscillations. Further analysis shows that the oscillations are due to a competition for H atoms between chain branching and chain-terminating reactions. Simulations of spherically expanding flames suggest that stretch effects (due to curvature) will cause the oscillations to occur in less rich mixtures than that observed for planar flames. The implications of these oscillations on the rich-flammability limit as well as the role of chemical kinetics in creating a fundamental flammability limit is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.