Abstract

Dynamically manipulating droplet motion on hydrophobic surfaces is crucial in various fields, including biomedical, sensing, actuation, and oil-water separation applications. Ferrofluid droplets can be manipulated and controlled using external magnetic forces. The creation of ferrofluids involves multiple procedures that can affect the functionality and stability of droplet manipulation, limiting their use in sustainable applications. This study investigates the dynamics of droplet motion over functionalized and non-functionalized ferroparticles, considering different droplet volumes, ferroparticle layer widths, and wt% concentrations. The translational and sliding velocities of the droplets are measured using high-speed camera recording with a tracker application. The finding revealed the transformation of a droplet sliding motion into a rolling motion with propulsion under the magnetic influence. The sliding velocity increases for the droplets moving over the ordinary ferroparticles on the hydrophobic surface. However, the droplet motion is dominated by rolling in the case of hydrophobic ferro particles. The droplet sliding velocity rises sharply at high concentrations (or layer width) of ferroparticle as the magnetic bond number rises sharply to 3. A newborn droplet adheres to the magnet surface during droplet rolling and sliding motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.