Abstract

The dynamics of O2 dissociative chemisorption on Cu(100) is studied by means of quasi-classical dynamics simulation making use of a 6-dimensional potential energy surface based on density functional theory (DFT) calculations. The sticking probability is found in reasonable agreement with experiment above 0.3 eV collision energy. However, theory fails at capturing the activated behaviour experimentally evidenced for lower energies. While molecular beam experiments exhibit an energetic threshold in the sticking curve, simulations show a high dissociation probability at collision energies below this threshold. Present calculations suggest that this discrepancy is due to dynamics governed by a direct dissociation mechanism steming from several barrierless reaction paths associated with an indirect dissociation mechanism governed by dynamic trapping. These direct and indirect components are strongly related to the structure of the PES questioning the reliability of the DFT calculations and the choice of the functional used. Beyond the question of the DFT accuracy, this theoretical work addresses the still open question of experiments/theory comparison for systems involving O2 and metal surfaces such as Cu(100).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.