Abstract

In this manuscript, we show how flow equation methods can be used to study localisation in disordered quantum systems, and particularly how to use this approach to obtain the non-equilibrium dynamical evolution of observables. We review the formalism, based on continuous unitary transforms, and apply it to a non-interacting yet non trivial one dimensional disordered quantum systems, the power-law random banded matrix model whose dynamics is studied across the localisation-delocalisation transition. We show how this method can be used to compute quench dynamics of simple observables, demonstrate how this formalism provides a natural framework to understand operator spreading and show how to construct complex objects such as correlation functions. We end with an outlook of unsolved problems and ways in which the method can be further developed in the future. Our goal is to motivate further adoption of the flow equation method, and to equip and encourage others to build on this technique as a means to study localisation phenomena in disordered quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.