Abstract

We investigate the cluster formations and dynamics in a magnetorheological fluid under a rotational magnetic field focusing on the case of a relatively high volume fraction. We find that isotropic disklike clusters, which rotate more slowly than the field rotation, are formed at low Mason numbers (the ratio of viscous to magnetic forces) and, what is more, we show short rod clusters, which rotate stably thanks to the low Mason numbers and circulate along the surface of the disklike clusters. The circulation velocity of the surface particles is much higher than the rotational surface velocity of the rigid disklike clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.