Abstract

Practical combustion systems consist of multiple thermoacoustic modes that are linearly stable or unstable at a wide range of frequencies. When coupled, the modal interactions are a strong function of the frequency spacing between them – having very significant implications on interpretation of linear stability or instability of modes from experimental data. Frequency spacing between the modes particularly influences the stability and existence of potential limit cycle solutions. In this paper, we extend earlier deterministic studies to include the effects of noise, studying how deterministic dynamics change with the addition of noise and the simultaneous impact of frequency spacing (i.e., closely, or widely spaced). Specifically, this paper characterizes three key effects of noise, which are (1) distribution of limit cycle amplitudes (“diffusion”), (2) shift in the average limit cycle amplitudes (“noise induced drift”), and (3) introduction of new bifurcations that are not present in the deterministic system. Key conclusions from this work are that in highly noisy practical environments, a deterministic/ low noise analysis will not be sufficient to explain even critical qualitative features of the system – such as existence of stable limit cycles or their amplitudes. Moreover, the nature of noise-induced effects on nonlinear modal interactions can be fundamentally different for degenerate, closely spaced, and widely spaced modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.