Abstract

We have successfully designed, fabricated, and tested contact recording sliders where most of the suspension load is supported by an air-bearing surface with only a small contact force (<5 mN) acting on the rear contact pad. To understand the contact dynamics, we have developed an integrated approach where experimental results from friction and laser doppler vibrometry are modeled using an air-bearing code modified to include contact forces. A low bounce (<1 nm mean-to-peak) is achieved in our designs by reducing the real area of contact to minimize friction, by increasing disk roughness, and/or by reducing the width of the slider contact pad. Due to the reduced magnetic spacing, these contact recording heads have bit-error rates several orders lower than conventional flying heads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.