Abstract

In this paper, we investigate systems of several point masses moving in constant curvature two-dimensional manifolds and subjected to certain holonomic constraints. We show that in certain cases these systems can be considered as rigid bodies in Euclidean and pseudo-Euclidean three-dimensional spaces with points which can move along a curve fixed in the body. We derive the equations of motion which are Hamiltonian with respect to a certain degenerated Poisson bracket. Moreover, we have found several integrable cases of described models. For one of them, we give the necessary and sufficient conditions for the integrability.This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.