Abstract

The dynamics of capillary-driven flow was studied for water and water–glycerol mixtures in open hydrophilic microchannels (embedded in a hydrophobic matrix). The position of the advancing meniscus was recorded as a function of time using high speed microscopy and compared with the Washburn equation. The square of the position of the liquid front increased linearly with time, as predicted by Washburn. For a channel of the same depth, irrespective of the shape of the channel cross-section (rectangular or curved), the liquid flow was faster with decreasing channel width. A modified Washburn equation, accounting for the different flow profile in the open, noncylindrical channels, was developed. The theoretical prediction was in good agreement with the experimental data for a no-slip boundary condition at the liquid–air interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.