Abstract

As an ingenious convergence between the Internet of Things and social networks, the Social Internet of Things (SIoT) can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information. Nevertheless, SIoT is characterized by high openness and autonomy, multiple kinds of information can spread rapidly, freely and cooperatively in SIoT, which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion. To this end, with the aim of exploring multi-information cooperative diffusion processes in SIoT, we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper. Subsequently, the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated, and the diffusion trend is predicted. On this basis, to further control the multi-information cooperative diffusion process efficiently, we propose two control strategies for information diffusion with control objectives, develop an optimal control system for the multi-information cooperative diffusion process, and propose the corresponding optimal control method. The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory. Finally, extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model, strategy and method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.