Abstract
Abstract This study investigates the properties of solutions about one-dimensional wave equations connected in parallel under the effect of two nonlinear localized frictional damping mechanisms. First, under various growth conditions about the nonlinear dissipative effect, we try to establish the decay rate estimates by imposing minimal amount of support on the damping and provide some examples of exponential decay and polynomial decay. To achieve this, a proper observability inequality has been proposed and constructed based on some refined microlocal analysis. Then, the existence of a global attractor is proved when the damping terms are linearly bounded at infinity, a special weighting function has been used in this part, which eliminates undesirable terms of the higher order while contributing lower-order terms. Finally, we establish that the long-time behavior of solutions of the nonlinear system is completely determined by the dynamics of large finite number of functionals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.