Abstract

The self-assembly of binary colloidal mixtures provides a bottom-up approach to create novel functional materials. To elucidate the effect of composition, temperature, and pressure on the self-assembly behavior of size-asymmetric mixtures, we performed extensive dynamics simulations of a simple model of polymer-grafted colloids. We have used a core-softened interaction potential and extended it to represent attractive interactions between unlike colloids and repulsions between like colloids. Our study focused on size-asymmetric mixtures where the ratio between the sizes of the colloidal cores was fixed at σBσA=0.5. We have performed extensive simulations in the isothermal-isobaric and canonical (NVT) ensembles to elucidate the phase behavior and dynamics of mixtures with different stoichiometric ratios. Our simulation results uncovered a rich phase behavior, including the formation of hierarchical structures with many potential applications. For compositions where small colloids are the majority, sublattice melting occurs for a wide range of densities. Under these conditions, large colloids form a well-defined lattice, whereas small colloids can diffuse through the system. As the temperature is decreased, the small colloids localize, akin to a metal-insulator transition, with the small colloids playing a role similar to electrons. Our results are summarized in terms of phase diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.