Abstract

Interstellar bubbles appear to be smaller in observations than expected from calculations. Instabilities at the shell boundaries create three-dimensional ef- fects, and are probably responsible for part of this discrepancy. We investigate instabilities and dynamics in superbubbles by 3D hydrodynamics simulations with time-resolved energy input from massive stars, including the supernova explosions. We find that the superbubble shells are accelerated by supernova explosions, coincident with substantial brightening in soft X-ray emission. In between the explosions, the superbubbles lose energy efficiently, approaching the momentum-conserving snowplow limit. This and enhanced radiative losses due to instabilities reduce the expansion compared to the corresponding radiative bubbles in pressure-driven snowplow models with constant energy input. We note generally good agreement with observations of superbubbles and some open issues. In particular, there are hints that the shell velocities in the X-ray-bright phases is underpredicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.