Abstract

Spectra of the atomic resonance fluorescence and of the cavity-transmitted light in a driven Jaynes-Cummings system are studied theoretically, where the cavity is driven by a classical field of arbitrary strength. In the regime of strong atom-cavity coupling, anomalous resonance peaks occur at $\ifmmode\pm\else\textpm\fi{}\sqrt{n}{g}^{\ensuremath{'}} (n=2,3,\dots{}),$ with the modified vacuum Rabi frequency ${g}^{\ensuremath{'}},$ both in the atomic fluorescence and the cavity transmission. These peaks as well as the observed shift of the vacuum Rabi splitting are explained in terms of the quasienergy levels induced dynamically by the strong driving field. For a stronger driving field, it is shown that the spectrum of the cavity transmission deviates from that of the atomic fluorescence. In the presence of significant damping, the spectrum of the cavity transmission approaches a singlet structure in the strong driving-field limit, and it is found additionally that a bimodal photon-number distribution, which results in a unique quintuplet spectrum of the atomic fluorescence, does not show up in the cavity transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.