Abstract

BackgroundUnderstanding the molecular alterations associated with breast cancer (BC) progression may lead to more effective strategies for both prevention and management. The current model of BC progression suggests a linear, multistep process from normal epithelial to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS), and then invasive ductal carcinoma (IDC). Up to 20% ADH and 40% DCIS lesions progress to invasive BC if left untreated. Deciphering the molecular mechanisms during BC progression is therefore crucial to prevent over- or under-treatment. Our previous work demonstrated that miR-671-5p serves as a tumor suppressor by targeting Forkhead box protein M1 (FOXM1)-mediated epithelial-to-mesenchymal transition (EMT) in BC. Here, we aim to explore the role of miR-671-5p in the progression of BC oncogenic transformation and treatment.MethodsThe 21T series cell lines, which were originally derived from the same patient with metastatic BC, including normal epithelia (H16N2), ADH (21PT), primary DCIS (21NT), and cells derived from pleural effusion of lung metastasis (21MT), and human BC specimens were used. Microdissection, miRNA transfection, dual-luciferase, radio- and chemosensitivity, and host-cell reactivation (HCR) assays were performed.ResultsExpression of miR-671-5p displays a gradual dynamic decrease from ADH, to DCIS, and to IDC. Interestingly, the decreased expression of miR-671-5p detected in ADH coexisted with advanced lesions, such as DCIS and/or IDC (cADH), but not in simple ADH (sADH). Ectopic transfection of miR-671-5p significantly inhibited cell proliferation in 21NT (DCIS) and 21MT (IDC), but not in H16N2 (normal) and 21PT (ADH) cell lines. At the same time, the effect exhibited in time- and dose-dependent manner. Interestingly, miR-671-5p significantly suppressed invasion in 21PT, 21NT, and 21MT cell lines. Furthermore, miR-671-5p suppressed FOXM1-mediated EMT in all 21T cell lines. In addition, miR-671-5p sensitizes these cell lines to UV and chemotherapeutic exposure by reducing the DNA repair capability.ConclusionsmiR-671-5p displays a dynamic decrease expression during the oncogenic transition of BC by suppressing FOXM1-mediated EMT and DNA repair. Therefore, miR-671-5p may serve as a novel biomarker for early BC detection as well as a therapeutic target for BC management.

Highlights

  • Breast cancer (BC) represents one of the most significant disease burdens of any cancer worldwide

  • We extend our study to further demonstrate that miR-671-5p undergoes a dynamic change during the oncogenesis from atypical ductal hyperplasia (ADH) to ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) in formalin-fixed paraffin-embedded (FFPE) tissue, blood, and a T21 series cell model that mimics specific stages of human breast cancer (BC) progression

  • Expression of miR-671-5p decreased gradually in breast lesions during the BC oncogenic transformation In our previous work, we found decreased expression of miR-671-5p in BC compared to their adjacent normal tissues

Read more

Summary

Introduction

Breast cancer (BC) represents one of the most significant disease burdens of any cancer worldwide. Breast carcinogenesis assumes a gradual transition from normal breast epithelial cells to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS), and eventually to invasive ductal carcinoma (IDC) [1]. Up to 20% ADH and 40% of DCIS lesions progress to invasive disease if untreated [2, 3]. Understanding the molecular mechanism during the stepwise progression of breast tumorigenesis is essential for identifying reliable biomarkers to prevent over- or under-treatment of patients diagnosed with ADH or DCIS. Understanding the molecular alterations associated with breast cancer (BC) progression may lead to more effective strategies for both prevention and management. The current model of BC progression suggests a linear, multistep process from normal epithelial to atypical ductal hyperplasia (ADH), to ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). We aim to explore the role of miR-671-5p in the progression of BC oncogenic transformation and treatment

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.