Abstract

We elucidate the role of magnon interaction and spontaneous decays in the spin dynamics of the triangular-lattice Heisenberg antiferromagnet by calculating its dynamical structure factor within the spin-wave theory. Explicit theoretical results for neutron-scattering intensity are provided for spins S=1/2 and S=3/2. The dynamical structure factor exhibits unconventional features such as quasiparticle peaks broadened by decays, non-Lorentzian lineshapes, and significant spectral weight redistribution to the two-magnon continuum. This rich excitation spectrum illustrates the complexity of the triangular-lattice antiferromagnet and provides distinctive qualitative and quantitative fingerprints for experimental observation of decay-induced magnon dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.