Abstract

Electron transfer is investigated in a series of self-assembled monolayers (SAMs) consisting of nitrile-substituted short chain alkanethiolate molecules adsorbed at the Au(111) surface. Using first-principles methods and a model electron transfer Hamiltonian, we analyze the main factors controlling, at the molecular level, the electron injection times from donor states localized at the tail group of the SAM into the Au(111) substrate. We show that the donor–acceptor electronic couplings depend significantly on the orbital symmetry of the donor state and the length of the aliphatic spacer chain of the SAM. The dependence on the donor state symmetry and on the molecular structure of the linker can be used to control the electron injection times even in situations where the energy separation between the donor states is smaller than their width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.