Abstract

The dynamical regimes of four almost identical oscillators with pulsatile excitatory coupling have been studied theoretically with two models: a kinetic model of the Belousov-Zhabotinsky reaction and a phase-reduced model. Unidirectional coupling on a ring and all-to-all coupling have been considered. The time delay τ between the moments of a spike in one oscillator and a pulse perturbation of the other(s) plays a crucial role in the emergence of the dynamical modes, which are classified as regular, complex, and OS (oscillation-suppression)-modes. The regular modes, in which each oscillator gives only one spike during the period T, consist of the modes in which the period T is linearly dependent on τ and modes in which T is almost independent of τ. The τ-dependent and τ-independent modes alternate if τ increases. A unique sequence of modes observed at growing τ is the same for all types of connectivity and even for both excitatory and inhibitory coupling. For unidirectional coupling, the analytical dependence of T on τ is found for all regular modes. Multirhythmicity is observed at large values of the coupling strength Cex. The effect of small frequency dispersion (within a few percents) on the stability of the regular modes has been studied. Unusual modes like bursting or heteroclinic switching are found in narrow regions of the Cex-τ plane between the regular modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.