Abstract

The main aim of the paper is to research dynamic properties of a mechanical system consisting of a ball jumping between a movable baseplate and a fixed upper stop. The model is constructed with one degree of freedom in the mechanical oscillating part. The ball movement is generated by the gravity force and non‐harmonic oscillation of the baseplate in the vertical direction. The impact forces acting between the ball and plate and the stop are described by the nonlinear Hertz contact law. The ball motion is then governed by a set of two nonlinear ordinary differential equations. To perform their solving, the Runge–Kutta method of the fourth order with adaptable time step was applied. As the main result, it is shown that the systems exhibit regular, irregular, and chaotic pattern for different choices of parameters using the newly introduced 0–1 test for chaos, detecting bifurcation diagram, and researching Fourier spectra. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.