Abstract

Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is ‘flickering’ of a fast variable, predicting a longer-lasting switch from a low to a high state or vice versa. Considering the different timescales between metabolite and protein fluctuations in bacteria, we hypothesized that metabolic early warning indicators predict imminent transitions across a network threshold caused by enzyme saturation. We used stochastic simulations to determine if flickering predicts phenotypic transitions, accounting for a variety of molecular physiological parameters, including enzyme affinity, burstiness of enzyme gene expression, homeostatic feedback, and rates of metabolic precursor influx. In most cases, we found that metabolic flickering rates are robustly peaked near the enzyme saturation threshold. The degree of fluctuation was amplified by product inhibition of the enzyme. We conclude that sensitivity to flickering in fast variables may be a possible natural or synthetic strategy to prepare physiological states for an imminent transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.