Abstract

Dynamical instability in an one-dimensional many-body system with Morse-type interaction potential is studied by computer simulation. The dynamical instability of the Morse system is caused by two kinds of instability. One is the parametric instability caused by the stochastic fluctuation of positive curvature of a Riemannian manifold and the other is the local instability approximated by the local negative eigenvalues of the Hessian matrix for the potential function. We investigate the energy dependence of the maximal Lyapunov exponent in order to emphasize the characteristic dynamical instability of the Morse system and compare the characteristics with results have been reported in Fermi–Pasta–Ulam system and Lennard–Jones system. We also investigate the energy dependence of the particle diffusion in the Morse system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.