Abstract

In this paper, we consider a non-static cylindrically symmetric self-gravitating system with anisotropic matter configuration and investigate its stability regions by using a homogenous model. We establish perturbed form of dynamical equations by using Eulerian and Lagrangian approaches. The conservation of baryon number is applied to obtain adiabatic index as well as perturbed pressure. A variational principle is used to find characteristic frequency which helps to compute the instability criteria. It is found that dynamical instability can be prevented till the radius of a cylinder exceeds the limit R[Formula: see text]18. We conclude that the system becomes unstable against radial oscillations as the radial pressure increases relative to tangential pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.